Techniques for

 preparation of liquid samples with a desired concentration of analyte- Learn to prepare liquid samples with desired concentration of a solute

Importance

- Preparation of calibration samples (standards)
- Conducting chemical reactions
- Production of commercial liquids (gasoline, solvents, etc.)
- Conducting research experiments

Advantages of having the skill

- More accurate analytical measurements
- Lower consumption of expensive materials (solvents)
- More accurate and reliable experimental research
- Higher quality of manufactured products
- Greater satisfaction of the employer / salary

Problems for student without the skill

- Poor accuracy and precision of measurements
- Greater consumption of materials
- Extra time consumption for repeating experiments
- Poor quality of products
- Lower satisfaction of the employer / salary

Example - quantification

Concentrations of calibration standards are 20\% greater than they should be

Example - manufacture

Blending gasoline with octane booster

- Higher concentration = higher cost of production
- Lower concentration = lower octane number
- Much higher concentration = lower quality
- Much lower concentration = damage of engines

Concentration

- general measurement unit stating the amount of solute present in a known amount of solution

$$
\text { Concentration }=\frac{\text { amount of solute }}{\text { amount of solution }}
$$

- Amount - mass, volume or amount of substance

Concentrations

- Molar (M/L)
- Normal (moles of equivalent / L)
- Percentage (mass, volumetric or molar)
- Many other
- Whatever you wish to use

Molarity

- Molarity - number of moles per 1 L of solution
- 1 Mole $=6.02 \times 10^{23}$ molecules
- 1 Mole of ions $=6.02 \times 10^{23}$ ions
- $1 \mathrm{~mol} / \mathrm{L}$ of methanol in water $=6.02 \times 10^{23}$ methanol molecules per 1 L of water
- $1 \mathrm{~mol} / \mathrm{L}$ of Cl^{-}(chloride) ions in water $=6.02 \times 10^{23}$ of Cl^{-}(chloride) ions per 1 L of water

Exercise

- How many moles of NaCl are present in 100 mL of NaCl solution in water having concentration 0.123 mol/L?

Answer

- How many moles of Na^{+}ions are present in 100 mL of NaCl solution in water having concentration 0.123 mol/L?
- Answer: 0.0123 moL or 12.3 mmoL

Quiz 1/2

How many $\mathrm{SO}_{4}{ }^{2-}$ ions are present in 1.00 mL of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution in water having concentration $0.921 \mathrm{~mol} / \mathrm{L}$?
$1-6.02 \times 10^{23}$
$2-5.54 \times 10^{20}$
$3-8.55 \times 10^{21}$
$4-1.66 \times 10^{22}$

Quiz 2/2

How many milligrams of Ag^{+}ions are present in 15.4 mL of AgNO_{3} solution in water having concentration $0.0213 \mathrm{moL} / \mathrm{L}$?

- 1 - 35
- 2-250
- 3-14.2
- 4-130

Normality

- Normality - a number of equivalents of chemical compound per 1 L of sample
- Equivalent is a number of moles of chemical compound or ion that reacts with or supply:
- 1 mole of hydrogen $\left(\mathrm{H}^{+}\right)$or hydroxyl $\left(\mathrm{OH}^{-}\right)$ions in acidbase reactions
- 1 mole of electrons in redox reactions
- Normality is obsolete and rarely used in modern laboratories

Example of normality

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { or } \\
2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { or } \\
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { or }
\end{gathered}
$$

$$
1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{OH}^{-} \rightarrow 1 / 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

1 ion of OH^{-}ions corresponds to $1 / 2$ molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$ 1 equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in acid-base reactions $=1 / 2 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ or 3.01×10^{23} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{SO}_{4}$
6.02×10^{23} molecules

1 equivalent $\mathrm{H}_{2} \mathrm{SO}_{4}$
3.01×10^{23} molecules
(1/2 mole $\mathrm{H}_{2} \mathrm{SO}_{4}$)

Percentage

Percentage - is the concentration of compound (\%) in solution

$$
\text { Weight } \%=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \%
$$

Example: 1.00 kg of solution contains 22.5 g of NaCl . What is the weight \% of NaCl in the solution?

$$
\text { Concentration of } \mathrm{NaCl} \text { in the solution }=\frac{22.5 \mathrm{~g}}{1000 \mathrm{~g}} \times 100 \%=2.25 \%
$$

Volume \%

$$
\text { Volume } \%=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100 \%
$$

Example: 1 L of gasoline contains 11.4 mL of benzene. What is the volume \% of benzene in gasoline?

Volume $\%$ of benzene in gasoline $=\frac{11.4 \mathrm{~mL}}{1000 \mathrm{~mL}} \times 100 \%=1.14 \%$

Concentrations as ratios

In modern analytical chemistry, trace concentrations are often expressed as parts-per-million (ppm), parts-per-billion (ppb), parts-per-trillion (ppt) or parts-perquadrillion (ppq)

$$
\begin{aligned}
& 1 \mathrm{ppm}\left(\frac{\mathrm{w}}{\mathrm{~W}}\right)=\frac{1 \mathrm{mg} \text { of solute }}{1 \mathrm{~kg} \text { of solution }}=\frac{1 \mu \mathrm{~g} \text { of solute }}{1 \mathrm{~g} \text { of solution }}=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 10^{6} \\
& 1 \mathrm{ppm}\left(\frac{\mathrm{v}}{\mathrm{v}}\right)=\frac{1 \mathrm{~mL} \text { of solute }}{1 \mathrm{~m}^{3} \text { of solution }}=\frac{1 \mu \mathrm{~L} \text { of solute }}{1 \mathrm{~L} \text { of solution }}=\frac{\text { vol of solute }(\mathrm{g})}{\text { vol of solution }(\mathrm{g})} \times 10^{6} \\
& 1 \mathrm{ppm}\left(\frac{\mathrm{~m}}{\mathrm{~V}}\right)=\frac{1 \mathrm{mg} \text { of solute }}{1 \mathrm{~m}^{3} \text { of solution }}=\frac{1 \mu \mathrm{~g} \text { of solute }}{1 \mathrm{~L} \text { of solution }}=\frac{\text { mass of solute }(\mathrm{g})}{\text { vol of solution }(\mathrm{mL})} \times 10^{6}
\end{aligned}
$$

Concentrations as ratios

In modern analytical chemistry, trace concentrations are often expressed as parts-per-million (ppm), parts-per-billion (ppb), parts-per-trillion (ppt) or parts-perquadrillion (ppq)

$$
\begin{aligned}
& 1 \mathrm{ppb}\left(\frac{\mathrm{w}}{\mathrm{~W}}\right)=\frac{1 \mu \mathrm{~g} \text { of solute }}{1 \mathrm{~kg} \text { of solution }}=\frac{1 \mathrm{ng} \text { of solute }}{1 \mathrm{~g} \text { of solution }}=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 10^{9} \\
& 1 \mathrm{ppb}\left(\frac{\mathrm{~V}}{\mathrm{~V}}\right)=\frac{1 \mu \mathrm{~L} \text { of solute }}{1 \mathrm{~m}^{3} \text { of solution }}=\frac{1 \mathrm{~nL} \text { of solute }}{1 \mathrm{~L} \text { of solution }}=\frac{\text { vol of solute }(\mathrm{nL})}{\text { vol of solution }(\mathrm{L})} \times 10^{9} \\
& 1 \mathrm{ppb}\left(\frac{\mathrm{~m}}{\mathrm{~V}}\right)=\frac{1 \mu \mathrm{~g} \text { of solute }}{1 \mathrm{~m}^{3} \text { of solution }}=\frac{1 \mathrm{ng} \text { of solute }}{1 \mathrm{~L} \text { of solution }}=\frac{\text { mass of solute }(\mathrm{g})}{\text { vol of solution }(\mathrm{mL})} \times 10^{9}
\end{aligned}
$$

Typical units of concentrations

Liquid samples:

- volume \%;
- mol/L;
- g/L;
- ppm (w/v); ppb (w/v); ppt (w/v)

Solid samples:

- weight \%;
- g/kg;
- ppm (mg/kg or $\mu \mathrm{g} / \mathrm{g}$); ppb ($\mu \mathrm{g} / \mathrm{kg}$); ppt (ng/kg)

Gaseous samples:

- volume \%;
- ppm (v/v) - milliliters of gaseous compound in $1 \mathrm{~m}^{3}$ of gas mixture;
- ppm (w/v)

Exercise

Concentration of N -methyl aniline in gasoline is $13.5 \mathrm{mg} / \mathrm{mL}$. Convert this concentration to volumetric $\%(\mathrm{v} / \mathrm{v})$. Density of N -methyl aniline is $0.99 \mathrm{~g} / \mathrm{mL}$.

$$
1 \%\left(\frac{v}{v}\right)=\frac{10 \mu L}{m L}=0.01
$$

From this formula, it is clear that we need to convert 13.5 mg to $\mu \mathrm{L}$ (mass to volume). To do this, we can use formula: $\mathrm{m}=\mathrm{V} \rho$ or $\mathrm{V}=\mathrm{m} / \rho$

$$
\begin{aligned}
& V=\frac{13.5 \mathrm{mg} \mathrm{~mL}}{0.99 \mathrm{~g}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}}=0.0136 \mathrm{~mL} \\
& C=\frac{0.013 .6 \mathrm{~mL}}{m L}=0.0136 \times 100 \%=1.36 \%
\end{aligned}
$$

Measurement of weight

Analytical precision:

- $0.000001 \mathrm{~g}(1 \mu \mathrm{~g})$;
- $0.00001 \mathrm{~g}(0.01 \mathrm{mg})$;
- $0.0001 \mathrm{~g}(0.1 \mathrm{mg})$.

Technical balances:

- 0.001 g ;
- 0.01 g ;
- 0.1 g, etc.

Balances also differ by weight range.
Some (most modern) models can be connected to PC.

Measurement of volume

Volumetric flasks: precise measurement of final volume of solution being prepared (10-1000 mL)

Pipettes (hand-operated or automated): precise injection of volumes (microliters to 5 mL)

Analytical syringes: precise injection of small volumes (0.1 to $1000 \mu \mathrm{~L}$)

Graduated cylinders, beakers, flasks: used for non-precise fast measurements of volumes

Volume measurement

Volumetric flasks

Graduated cylinders

Exercise

How many microliters of MTBE (density $0.74 \mathrm{~g} / \mathrm{mL}$) must be added to 1 mL of gasoline having MTBE concentration $50 \mathrm{mg} / \mathrm{mL}$ to increase MTBE concentration in gasoline to $70 \mathrm{mg} / \mathrm{mL}$? Density of gasoline before and after addition of MTBE will remain unchanged $(0.74 \mathrm{~g} / \mathrm{mL})$.

$$
C\left(\frac{\mu g}{m L}\right)=\frac{m_{M T B E}}{V_{\text {gasoline }}}
$$

After addition of MTBE, mass of MTBE in gasoline, volume of gasoline and concentration of MTBE will increase. Final concentration of MTBE in gasoline will be equal to:

$$
C\left(\frac{\mu g}{m L}\right)=\frac{m_{M T B E ~ i n i t i a l}+m_{M T B E ~ a d d e d}}{V_{\text {total }}}
$$

Solution (continued)

$$
m_{M T B E \text { initial }}=C_{M T B E \text { initial }} \times V_{\text {gasoline initial }}=\frac{50 \mathrm{mg} \times 1 \mathrm{~mL}}{\mathrm{~mL}}=50 \mathrm{mg}
$$

Lets express volume of MTBE added as " X " $\mu \mathrm{L}$. Then the mass of MTBE added is equal to:

$$
m_{M T B E ~ a d d e d}=\frac{X \mu L \times 0.74 \mathrm{~g}}{m L} \times \frac{1 \mathrm{~mL}}{1000 \mu L}=0.00074 \mathrm{X} \mathrm{~g}=0.74 \mathrm{X} \mathrm{mg}
$$

Lets find the total volume of gasoline after addition of MTBE:

$$
\begin{aligned}
& V=\frac{m_{\text {gasoline }}+m_{M T B E ~ a d d e d ~}}{\rho_{\text {gasoline }}}=\frac{1 \mathrm{~mL} \times 0.74 \frac{g}{m L}+0.74 \mathrm{X} \mathrm{mg}}{0.74} \\
& =\frac{740 \mathrm{mg}+0.74 X \mathrm{mg}}{0.74 \frac{g}{\mathrm{~mL}}}=\frac{0.74(1000+X) \mathrm{mg} \mathrm{~mL}}{0.74 \mathrm{~g}}=(1+0.001 \mathrm{X}) \mathrm{mL} \\
& 70 \frac{\mathrm{mg}}{\mathrm{~mL}}=\frac{(50+0.74 X) \mathrm{mg}}{(1+0.001 X) \mathrm{mL}}
\end{aligned}
$$

Solution (continued)

$$
\begin{aligned}
70+0.070 X & =50+0.74 X \\
X=\frac{70-50}{0.74-0.07} & =\frac{20}{0.67}=29.9 \mu L
\end{aligned}
$$

Answer: $29.9 \mu \mathrm{~L}$ of MTBE should be added

Question

- Propose method to prepare solution of ethanol in water with $\mathrm{C}=1.00 \mathrm{mg} / \mathrm{mL}$

Options

- Inject 100 mg of methanol into 50 mL of water in $100-\mathrm{mL}$ volumetric flask, add water to the mark
- Dissolve 50 mg of methanol in water ($50-\mathrm{mL}$ flask)
- Dissolve 25 mg of methanol in water ($25-\mathrm{mL}$ flask)
- Dissolve 1.0 mg of methanol in 1.00 mL of water

Question

- Propose method to prepare solution of NaCl in water with $\mathrm{C}=5.0 \%(\mathrm{w} / \mathrm{w})$
- Density of 5% solution of NaCl in water $-1.034 \mathrm{~g} / \mathrm{mL}$

Options

- Add 95 g of water to 5.00 g of NaCl
- Accurately weight around 5 g of NaCl and add corresponding mass of water
- ???

Question

- Propose method to prepare solution of methanol in water with $\mathrm{C}=1.00 \mu \mathrm{~g} / \mathrm{L}$

Serial dilution

Serial dilution (100x)

Serial dilution (1000x)

Serial dilution

Preparation of stock solution

$$
\mathrm{m}(\text { pure substance })=\frac{\mathrm{m}(\text { solute })}{\text { Purity }}=\frac{\mathrm{CxV}}{\text { Purity }}
$$

Preparation of stock solution

Task: to prepare 100 mL of stock solution of 1 M NaCl in water

Substances needed:

1) $\mathrm{NaCl},>99 \%$
2) Distilled water

$$
\begin{gathered}
\mathrm{m}(\mathrm{NaCl})=\frac{\mathrm{C} \times \mathrm{V} \times \mathrm{MW}}{\text { Purity }} \\
\mathrm{m}(\mathrm{NaCl})=\frac{1 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.1 \mathrm{~L} \times 58.44 \frac{\mathrm{~g}}{\mathrm{~mol}}}{0.99}=\frac{5.844 \mathrm{~g}}{0.99}=5.903 \mathrm{~g}
\end{gathered}
$$

Recommendations for dilution

- Max 1000x dilution for aqueous solutions
- Max 100x dilution for organic solutions

Selection of volumes

- Depends on what volume is needed
- Higher volumes are required for higher accuracy
- Lower volumes are preferred for lower cost
- Lower volumes are mandatory for expensive materials

Tasks

- Propose method to prepare solution of toluene in methanol with a concentration $100 \mu \mathrm{~g} / \mathrm{L}$
- Propose method to prepare solution of naphthalene in methanol with a concentration $10 \mu \mathrm{~g} / \mathrm{L}$

